

Welcome to pvlab’s documentation!

Table of Contents

	1. License
	License: bsd-3-clause

	2. The PVLab Project
	Introduction

	History

	Development

	3. Release History
	Release 0.1.0.dev1

	Release 0.1.0.dev2

	Release 0.1.0.dev3

	Release 0.1.0.dev4

	Release 0.1.0.dev5

	Release 0.1.0.dev6

	Release 0.1.0.dev7

	4. Installation
	From Python installer

	From Anaconda IDE

	5. Create Dataframes
	DataFrames from dicts
	Function dict_to_df

	Function print_dict

	6. Math operations
	Composition
	Function module

	7. I/O Management
	Create dicts from Source Files
	Function get_dict

	Function get_dicts_list

	Create a list of channels
	Function set_channels

	Function set_channels_grouped

Indices and tables

	Index

	Module Index

	Search Page

1. License

License: bsd-3-clause

Copyright© 2019-2021, José P. Silva — All rights reserved.

1. Redistribution and use in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:

2. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

3. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

4. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2. The PVLab Project

Introduction

PVLAB is a project devoted to the development and improvement of scientific
software for the measurement, calibration and modeling of the performance of
photovoltaic devices and solar sensors. PVLAB package born from the efforts
in data treatment performed during the calibration of pyranometers at
the Laboratory of Photovoltaic Solar Energy (PVLab) of the Research Center
for Energy, Environment and Technology (CIEMAT) [https://www.ciemat.es] in Madrid, Spain.
In next releases, pvlab will provide sets of tools, mainly consisting in
classes and functions, to perform the data treatment for the calibration of
pyranometers and other type of solar sensors and photovoltaic devices.
Eventually, pvlab will try to widen its scope to further calibration
procedures of solar sensors and photovoltaic devices.

History

The origin of pvlab is a python tool, named calibration, which is
being developed since 2019 in PVLab-CIEMAT for its own use. It was
originally designed to manage the big amount of data generated during
the outdoor measurements, while performing the routine calibration
of pyranometers.

Soon, both the Python programming language and the calibration tool
themselves proved to be quick and reliable methods for data treatment.
Gradually, the code grew in complexity, whereas new functionalities were
being enabled. Indeed, to the basic requirements of data I/O and a first
block of core calculations, some others joined, like fine data-filtering,
determination of error sources and total uncertainty, tools for generation
of reports, graphics and further calibration records.

Finally, when it was concluded the development of the version 2.0.0 of the
application calibration, it became clear that a formal package should
be released, separately from the former tool. By doing so, some of the
resources created are now at disposal of the scientific community, under a
3-clause BSD License.

Development

One procedure chosen for the early development of pvlab is that,
as functions and classes created for its use at the lab are being adapted
from their specific purpose to address more general cases, and their
robustness and performance is considered sufficiently tested, they will be
progresively incorporated to the pvlab library.

In order to clarify the features and abilities of the objects created,
docstrings of relevant functions or classess contain examples, which have
been verified with the python built-in package doctest.
In addition, there is a test_[module] ready for each one, checked by using
the unittest built-in package.

On the other hand, author’s hope is that pvlab will eventually
turn into a community-developed library, so contributions and
constructive comments are welcome. At this respect, pvlab adopts the
aim of providing resources in the context of measurement, calibration,
determination of uncertainty, validation techniques and potentially,
many other utilities for the improvement of data treatment for solar sensors
and photovoltaic devices.

In the long term, a more general purpose lies in the background, which
is the advance of data science and the development of software projects for
scientific purposes, even “knocking at the doors” of data mining, machine
learning and deep learning techniques.

3. Release History

See what’s new in the latest release of pvlab project.

(check README.rst for a general description of the project and its content).

Release History

	Release 0.1.0.dev1

	Release 0.1.0.dev2

	Release 0.1.0.dev3

	Release 0.1.0.dev4

	Release 0.1.0.dev5

	Release 0.1.0.dev6

	Release 0.1.0.dev7

Release 0.1.0.dev1

Wellcome to the first release of pvlab software package!!

In the present release, this library provides a set of tools in order to facilitate the treatment of data for the outdoor calibration of pyranometers.

It is inspired in the calibration procedure corresponding to the outdoor calibration sections in ISO 9847 International Standard.

Mainly, it contains convenient functions and classes that help to perform the data treatment. These functions can be grouped together in order to achieve complex tasks like data filtering, determination of responsivities of sensors or the calculation of the total uncertainty.

Eventually, pvlab will try to widen its scope to further calibration procedures of solar sensors and photovoltaic devices.

Release 0.1.0.dev2

Minor changes and bug corrections.

Release 0.1.0.dev3

Minor changes and bug corrections.

Release 0.1.0.dev4

Minor changes and bug corrections.

Release 0.1.0.dev5

	Added module dictmarker (a unique file dictmaker.py) containining two new functions:

get_dict(file: TypeVar('File', str, io.StringIO), dtype: str, sep: str = ':', isStringIO: bool = False) -> dict:

and:

get_dicts_list(filelist: Iterable[str], dtypelist: Iterable[str], isStringIO: Iterable[bool], sep: str = ':') -> dict:

New functions are intended to read files of parameters and convert each data file into a python dictionary.

(see description and examples of use in pvlab’s documentation [https://pvlab.readthedocs.io/en/latest]).

	A new section I/O Management has been added to documentation.

	Some parts of Documentation in section Math operations have been rewritten, including titles.

	Some parts of Documentation in section Create Dataframes have been rewritten, including titles.

Release 0.1.0.dev6

	Added test cases for module dictmaker (file test_dictmaker.py). Test classes derive from unittest.TestCase class.

Release 0.1.0.dev7

	Added module channels (file channels.py). It contains two fuctions:

	Function set_channels(numbers: Iterable[int], names: Iterable[str], nameafter: bool = True) -> Iterable[str].
See `set_channels`_ documentation for further information.

	Function set_channels_grouped(numbergroups: Iterable[list], namegroups: Iterable[list], nameafter: bool = True, unify: bool = True, init_channels: list = []) -> Iterable[str].
See `set_channels_grouped`_ for further documentation.

_set_channels: https://pvlab.readthedocs.io/en/pvlab-0.1.0.dev7/usage/en/tools_io.html#function-set-channels
_Set_channels_grouped: https://pvlab.readthedocs.io/en/pvlab-0.1.0.dev7/usage/en/tools_io.html#function-set-channels-grouped

	Added license files for third-party packages.

	Added test module for functions in channels (file test_channels.py).

4. Installation

From Python installer

From pip, proceed as follows:

First of all, if a virtual environment (e.g. myvenv) has been
previously created, and it is the desired working environment,
it should be activated. You can do it by typing from
Terminal (in MacOS©/Unix):

source myenv/bin/activate

or, from a system console in Windows™ platforms:

.\myvenv\Scripts\activate

Also, the python installer pip itself should be updated:

python -m pip install --upgrade pip

Note

Be sure the python root folder is present in the system path.

Finally, the pvlab package can be installed:

python -m pip install --upgrade pvlab

From Anaconda IDE

When using the Anaconda IDE [https://www.anaconda.com], pvlab can be installed both by typing:

conda install pvlab

or, alternatively, from the Anaconda™ navigator, following the sequence:
Environments > Search Packages, and selecting the pvlab package.

5. Create Dataframes

Provide tools to manage dataframes in the context of calibration.

It contains the following python modules:

DataFrames from dicts

Perform type-conversion and pretty-print operations for dictionaries.

It contains the following functions:

Function dict_to_df

	
pvlab.dataframes.dfdicts.dict_to_df(dictionary: dict [https://docs.python.org/3/library/stdtypes.html#dict], columns: list [https://docs.python.org/3/library/stdtypes.html#list]) → pandas.core.frame.DataFrame

	Re-arrange a dictionary to become a pandas dataframe.
It performs a type conversion of a dictionary (e.g. a dictionary that
represents some kind of valid time intervals), returning a pandas.DataFrame.

Code examples:

When correct parameters are provided, it returns a pandas.DataFrame
object:

Example 1: correct use of function pvlab.dataframes.dfdicts.

>>> from pvlab.dataframes.dfdicts import dict_to_df

>>> dates = {'START_1': (2021,5,5,8,1,0), 'END_1': (2021,5,6,22,52,0)}

>>> columns = ['%Y', '%m', '%d', '%H', '%M', '%S']

>>> dict_to_df(dates, columns)
 %Y %m %d %H %M %S
START_1 2021 5 5 8 1 0
END_1 2021 5 6 22 52 0

Otherwise, a ValueError is raised when the length of columns
does not match the length of the values of the given dictionary:

Example 2: list of columns shorter than expected.

>>> from pvlab.dataframes.dfdicts import dict_to_df

>>> columns = ['%Y', '%m', '%d', '%H', '%M']

>>> dict_to_df(dates, columns)
Traceback (most recent call last):
 ...
ValueError: Length of columns list is equal to 5, but has to be equal to 6.

Function print_dict

Example 3: list of columns longer than expected.

>>> from pvlab.dataframes.dfdicts import dict_to_df

>>> columns = ['%Y', '%m', '%d', '%H', '%M', '%S', '%mS']

>>> dict_to_df(dates, columns)
Traceback (most recent call last):
 ...
ValueError: Length of columns list is equal to 7, but has to be equal to 6.

	
pvlab.dataframes.dfdicts.print_dict(dictionary: dict [https://docs.python.org/3/library/stdtypes.html#dict], columns: list [https://docs.python.org/3/library/stdtypes.html#list], title: str [https://docs.python.org/3/library/stdtypes.html#str] = '') → None [https://docs.python.org/3/library/constants.html#None]

	Prettyprint a dictionary of dates, adding a title.
It appears to be similar to dict_to_df, but print_dict just print,
(it does not return a pandas.DataFrame object, it returns None):

Example 4: correct use of function pvlab.dataframes.print_dict.

>>> from pvlab.dataframes.dfdicts import print_dict

>>> dates = {'START_1': (2021,5,5,8,1,0), 'END_1': (2021,5,6,22,52,0)}

>>> columns = ['%Y', '%m', '%d', '%H', '%M', '%S']

>>> title = 'Valid time intervals'

>>> print_dict(dates, columns, title)
Valid time intervals

 %Y %m %d %H %M %S
START_1 2021 5 5 8 1 0
END_1 2021 5 6 22 52 0

6. Math operations

Provide tools for mathematical or statistical operations.

Composition

Composition of quantities, intended for statistical purposes.

Function module

	
pvlab.math.module.module(*components: Sequence[float [https://docs.python.org/3/library/functions.html#float]]) → float:

	Calculate the module of a vector, or the result of a quadratic composition,
given its components. It supports n-dimensional components.
It is useful when working with versions of python older than 3.8
(e.g. for determining the total type B uncertainty from homogeneous
contributions).

Note

In python v3.8, it was added support for n-dimensional points in
built-in function math.hypot. Then, in python 3.10,
accuracy was improved. Here [https://docs.python.org/3/library/math.html#trigonometric-functions] for further information.

Example 1: correct use of function pvlab.math.module.

from pvlab.math.module import module

components = [5, 8, 3, 6]

round(module(*components), 3)
11.576

Example 2: components must be float or int types.

from pvlab.math.module import module

components = [5, 3, 8, '6']
module(*components)

Traceback (most recent call last):
 ...
TypeError: components items must be int or float types.

7. I/O Management

Provide tools for data input/output.

Create dicts from Source Files

Generate python dictionaries from multiple files and data types.

New functions are intended to read files of parameters and convert each
data file into a python dictionary. Different type of parameters should be
located in different files, for better performance.

It contains the following functions:

Function get_dict

	
pvlab.io.dictmaker.get_dict(file: TypeVar('File', str, io.StringIO), dtype: str [https://docs.python.org/3/library/stdtypes.html#str], sep: str [https://docs.python.org/3/library/stdtypes.html#str] = ':', isStringIO: bool [https://docs.python.org/3/library/functions.html#bool] = False) → dict:

	Generate a python dictionary from a file of parameters.

Function get_dict reads a file that contains parameters in the form
[name]: [value] (or in other general form [name][sep] [value], if
specified).
It requires specifying the type of data contained in the file, admitting
types int, float, tuple or str (unknown data types are
admitted, but they will be parsed as raw strings).
Originally designed for data-acquisition purposes. It also admits
io.StringIO objects instead, if argument isStringIO is specified
as True (e.g. useful for exemplification purposes).

Example 1: int type arguments:

from io import StringIO
from pvlab.io.dictmaker import get_dict

data = "readings:21\nminG:600\nrefG:1000"
settings = get_dict(io.StringIO(data), dtype='int', isStringIO=True)
... argument "io.StringIO(data)" can be replaced by a file name.

settings
{'readings': 21, 'minG': 600, 'refG': 1000}

Example 2: str type arguments:

from io import StringIO
from pvlab.io.dictmaker import get_dict

data = "man.:'manufacturer'\nmod.:'model'\nsn.:'seriesnr'"
mydict = get_dict(io.StringIO(data), dtype='str', isStringIO=True)

mydict
{'man.': 'manufacturer', 'mod.': 'model', 'sn.': 'seriesnr'}

Function get_dicts_list

	
pvlab.io.dictmaker.get_dicts_list(filelist: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], dtypelist: Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]], isStringIO: Iterable[bool [https://docs.python.org/3/library/functions.html#bool]] = False, sep: str [https://docs.python.org/3/library/stdtypes.html#str] = ':') → dict:

	Generate a list of dicts from a list of parameter files or io.StringIO
objects.

It calls the previous function get_dict recursively, from correlative
values of filelist and dtypelist arguments.

Example 3: source objects containing both float and str arguments.

from io import StringIO
from pvlab.io.dictmaker import get_dicts_list

floatdata = "maxdev:0.02\noffsetthreeshold:2.0"
filters = io.StringIO(floatdata) # StringIO_1 (or filename_1)

strdata = "mode_refpyr:'voltage'\nmode_dut:'currentloop'"
calmode = io.StringIO(strdata) # StringIO_2 (or filename_2)

isstringio = ['True', 'True'] # io.StringIO objects? (defaults False)
caliblist = get_dicts_list([filters, calmode], ['float', 'str'], isStringIO=isstringio) # it returns a list of python dicts.

caliblist[0] # ...data from StringIO_1 (or filename_1)
{'maxdev': 0.02, 'offsetthreeshold': 2.0}

caliblist[1] # ... data from StringIO_2 (or filename_2)
{'mode_refpyr': 'voltage', 'mode_dut': 'currentloop'}

Create a list of channels

Provide tools to facilitate the selection of relevant data.

It contains the following functions:

Function set_channels

	
pvlab.io.channels.set_channels(numbers: Iterable[int [https://docs.python.org/3/library/functions.html#int]], names: Iterable[int [https://docs.python.org/3/library/functions.html#int]], nameafter: bool [https://docs.python.org/3/library/functions.html#bool] = True) → Iterable[str]:

	Generate a list of channel names from a set of numbers and a set of names.

It is designed to automate the selection of specific active
channels,*e.g.* within data frames containing a big number of data
columns.

Given a list of n numbers (numbers) and m names (names), it
generates a list of channel names in the form:

[
[number_1][name_1],
[number_1][name_2], …,
[number_1][name_m],
, …,
, …,
, …,
[number_n][name_1],
number_n][name_2], …,
[number_n][name_m],
]

If argument nameafter is True (by default), names
are added after numbers. Otherwise, names are added before numbers.

Item types (both numbers and names) must be convertible into strings.

If the numbers list is empty, it directly retuns the names list.

In the same way, if the names list is empty, it returns the
numbers list. Anyway, it performs a previous conversion into str
types.

At least one list must not be empty.

Example 1: function set_channels.

from pvlab.io.channels import set_channels

numbers = [101, 115, 207]
names = ['(Time stamp)', '(VDC)']

set_channels(numbers, names).__class__ == list
True
len(set_channels(numbers, names)) == 6
True

channels = set_channels(numbers, names)

channels[:2]
['101(Time stamp)', '101(VDC)']
channels[2:4]
['115(Time stamp)', '115(VDC)']
channels[4:]
['207(Time stamp)', '207(VDC)']

Function set_channels_grouped

	
pvlab.io.channels.set_channels_grouped(numbergroups: Iterable[list [https://docs.python.org/3/library/stdtypes.html#list]], namegroups: Iterable[list [https://docs.python.org/3/library/stdtypes.html#list]], nameafter: bool [https://docs.python.org/3/library/functions.html#bool] = True, unify: bool [https://docs.python.org/3/library/functions.html#bool] = True, init_channels: list [https://docs.python.org/3/library/stdtypes.html#list] = []) → Iterable[str]:

	Generate a list of channels from multiple lists of numbers and names.

It applies recursively the fuction set_channels to multiple sets
of numbers and names. Therefore, it allows the generation of multiple
channel names that contains different names.

Argument nameafter possesses the same significance than in
set_channels, and defaults to True.

If argument unify (defaults True) is True, function returns
a unique list of channels. If it is False, function returns
separate lists.

If arguments ‘numbergroups’ and ‘namegroups’ are not of the same length,
the shorter one marks the end of parsing, and further terms in the
larger argument are neglected, so numbers3 argument in an entry like:
set_channels_grouped([numbers1, numbers2, numbers3],
[names1, names2]) is neglected, and so it is names3 argument
in entry set_channels_grouped([numbers1, numbers2],
[names1, names2, names3]).

Example 2: function set_channels_grouped.

from pvlab.io.channels import set_channels_grouped

numbers1 = [101, 102, 104]
numbers2 = [201, 202, 204]

names1 = ['(Time stamp)', '(voltage)']
names2 = ['(Time stamp)', '(temperature)']

channels = set_channels_grouped([numbers1, numbers2], [names1, names2])

let's do some checking:
channels.__class__ == list # it should return a list
True
channels[:2] # the first two elements ...
['101(Time stamp)', '101(voltage)']
channels[-2:] # ... and the last two.
['204(Time stamp)', '204(temperature)']

On the other hand, being ...
len_1 = len(numbers1) * len(names1)
and ...
len_1 = len(numbers1) * len(names1)
the total amount of items generated should be ...
len(channels) == len_1 + len_2
True

Finally, all items must be strings...
[type(item) for item in channels] == [str] * len(channels)
True

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pvlab	

 	
 	
 pvlab.dataframes	

 	
 	
 pvlab.dataframes.dfdicts	

 	
 	
 pvlab.io.channels	

 	
 	
 pvlab.io.dictmaker	

 	
 	
 pvlab.math	

 	
 	
 pvlab.math.module	

Index

 D
 | M
 | P

D

 	
 	dict_to_df() (in module pvlab.dataframes.dfdicts)

M

 	
 	
 module

 	pvlab.dataframes

 	pvlab.dataframes.dfdicts

 	pvlab.io.channels

 	pvlab.io.dictmaker

 	pvlab.math

 	pvlab.math.module

P

 	
 	print_dict() (in module pvlab.dataframes.dfdicts)

 	
 pvlab.dataframes

 	module

 	
 pvlab.dataframes.dfdicts

 	module

 	
 pvlab.io.channels

 	module

 	pvlab.io.channels.set_channels() (in module pvlab.io.channels)

 	pvlab.io.channels.set_channels_grouped() (in module pvlab.io.channels)

 	
 	
 pvlab.io.dictmaker

 	module

 	pvlab.io.dictmaker.get_dict() (in module pvlab.io.dictmaker)

 	pvlab.io.dictmaker.get_dicts_list() (in module pvlab.io.dictmaker)

 	
 pvlab.math

 	module

 	
 pvlab.math.module

 	module

 	pvlab.math.module.module() (in module pvlab.math.module)

 _static/plus.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to pvlab’s documentation!

 		
 License

 		
 License: bsd-3-clause

 		
 The PVLab Project

 		
 Introduction

 		
 History

 		
 Development

 		
 Release History

 		
 Release 0.1.0.dev1

 		
 Release 0.1.0.dev2

 		
 Release 0.1.0.dev3

 		
 Release 0.1.0.dev4

 		
 Release 0.1.0.dev5

 		
 Release 0.1.0.dev6

 		
 Release 0.1.0.dev7

 		
 Installation

 		
 From Python installer

 		
 From Anaconda IDE

 		
 Create Dataframes

 		
 DataFrames from dicts

 		
 Function dict_to_df

 		
 Function print_dict

 		
 Math operations

 		
 Composition

 		
 Function module

 		
 I/O Management

 		
 Create dicts from Source Files

 		
 Function get_dict

 		
 Function get_dicts_list

 		
 Create a list of channels

 		
 Function set_channels

 		
 Function set_channels_grouped

